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SUMMARY

The problem of the determination of the Lyapunov spectrum in chaotic advection using approxima-
ted velocity �elds resulting from a standard FEM method is investigated. A fourth order Runge–Kutta
scheme for trajectory integration is combined with a third order Jacobian matrix method with QR-
factorization. After checking the algorithm on the standard Lorenz and coupled quartic oscillator systems,
the method is applied to a model 3-D steady �ow for which an analytical expression is known. Both
linear and quadratic approximated velocity �elds succeed in predicting the Lyapunov exponents as well
as describing the chaotic or regular regions inside the �ow with satisfactory accuracy. A more realistic
�ow is then studied in order to delineate the possible limitations of the approach. Copyright ? 2005
John Wiley & Sons, Ltd.
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1. INTRODUCTION

From the point of view of �uid mechanics, the trajectory of a �uid particle advected by a
�ow is the solution of the system of ordinary di�erential equations:

dx
dt
= u(x(t); t) with x(0)=x0 (1)

where x(t) is the location of the particle at time t, u(x(t); t) the velocity �eld at the spatial
location x(t) and time t and x0 a speci�ed initial location. By using the system (1), it is
assumed that u satis�es the usual conservation equations of mass and momentum, that is, for
many cases of interest, the Navier–Stokes equations.
From the point of view of mathematics, the set of Equations (1) is a dynamical system

which may have chaotic solutions: this is potentially the case if the system (1) has at least
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three degrees of freedom and if u depends non-linearly on x. The simplest situations are when
u is a two-dimensional (2-D), time periodic, velocity �eld or a three dimensional (3-D), steady
one.
Putting together these points of view was the key idea of the seminal paper of Aref [1]

which was the starting point of many further studies on chaotic advection (for more informa-
tion on chaotic advection, see References [2–4]). Because chaotic advecting �ows exhibit an
intrinsic ability for dispersing �uid particles, they are thus powerful candidates for mixing sys-
tems. In particular, chaotic advection may be generated by laminar �ows under circumstances
where turbulence is not possible. Among many other examples, e�cient mixing systems are
required in biological applications involving micro�uidic devices with such small size that only
laminar �ows can be generated (see References [5, 6] for examples of chaotic micromixers;
see also References [7–9] for general concepts in micro�uidics).
Most of the early works studied �ows with particular analytical solutions of either the Euler

equations (for instance, References [1, 10]) or the Stokes equations (for instance, References
[11–13] for time periodic 2-D �ows; References [14, 15] for steady 3-D �ows). Perturbation
methods, when available, may also be sometimes useful to capture the essential features of
the �ow [16]. However, in the general case, no analytical expression of the velocity �eld
is known and numerical simulation is required. This velocity �eld (Eulerian frame) then
serves to investigate the properties of the trajectory topology (Lagrangian frame). Basic tools
for characterizing chaotic advection are Poincar�e sections and Lyapunov exponents. Relevant
Poincar�e sections require a lot of points in order to delineate the presence of regular or
chaotic regions. By de�nition, Lyapunov exponents are asymptotic quantities. The natural
question arising is thus the ability of predicting the long-time behaviour of an advected �uid
particle under the action of a velocity �eld which only approximately satis�es the conservation
equations, especially the equation of mass conservation. This problem has been pointed out
by Souvaliotis et al. [17] who performed a systematic investigation of the (2-D) time periodic
journal bearing �ow. This work, as well as the few subsequent attempts [18–20], underlines
the di�culties inherent in the problem of determining accurately the location of periodic
points of the Poincar�e section, the stretching properties of the �ow or the boundaries of
regular regions. Strong e�ects of grid dependency have been observed whereas, for such
Stokes-like �ows, only relatively coarse grids are required to predict the Eulerian properties
of the velocity �eld. Moreover, only results for moderately long-time integrations (typically a
few hundred of Poincar�e section points or less) have been obtained. Nevertheless, meaningful
predictions can be obtained as demonstrated by the work of Fountain et al. [20] who showed
very convincing comparisons between numerical and experimental results.
The Poincar�e section is an essential tool for characterizing chaos. For practical applications,

the presence of regular regions is an undesirable feature since they are associated with poor
mixing e�ciency [21]. However, the use of Poincar�e section is rather qualitative. Quantitative
information is provided by the Lyapunov exponents which characterize the mean asymptotic
exponential stretching of a �uid particle along its trajectory. Lyapunov exponents are essential
since they provide a characteristic time scale which can be further used to evaluate the growth
of scalar �eld gradient in a mixing problem. It is thus of primary importance to analyse the
accuracy of Lyapunov exponent evaluation when approximated velocity �elds are considered.
The present paper is devoted to this task. It focuses on approximated velocity �elds of chaotic
advecting �ows obtained by �nite element method (FEM) simulation. A numerical method for
the determination of the Lyapunov spectrum, mainly based on the Eckmann–Ruelle Jacobian
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matrix method, is proposed in Section 2. In Section 3, after checking the validity of the
numerical scheme, its numerical implementation is tested on a model �ow problem for which
an analytical expression of the velocity �eld is known. Then, a more realistic �ow is studied
in order to illustrate some possible limitations which do not appear in the simpler preceding
test.

2. A NUMERICAL METHOD FOR DETERMINING THE LYAPUNOV SPECTRUM

2.1. Short introduction to Lyapunov (characteristic) exponents and their numerical
determination

The Lyapunov exponents are a measure of the sensitivity of the dynamical system to the initial
condition. They are directly related to the multiplicative ergodic theorem of Oseledec [22]: for
mathematical details, the reader is referred to the review by Eckmann and Ruelle [23] or to
classical books on the subject matter (see References [3, 24] for instance). In the following,
u is assumed to be a di�erentiable function of x. Moreover, the analysis is restricted to either
stationary or time periodic velocity �elds.
In the usual approach, we �rst consider the mapping of x from time t to time t + �

x(t + �)=F�(x(t)) (2)

obtained by formally integrating Equation (1) between t and t + �, � denoting the period of
the �ow �eld (and being arbitrary for steady �ows). Di�erently expressed, the location x(n�)
reached at time t= n�, n being an integer, from an initial location x0 results from applying
the mapping n times

x(n�)=Fn�(x0) (3)

The notion of Lyapunov exponent �rst requires the consideration of an in�nitesimally small
departure U(0) from the initial location x0. From (1), it is quite straightforward to deduce that
the evolution of U(t) along the corresponding trajectory is given by

dU
dt
=∇u(x(t); t)U(t) (4)

which, after integration between time t=0 and t= n�, gives

U(n�)=DFn�(x0)U(0) (5)

where DF� is the Jacobian matrix of F� (i.e. (DF�)ij= @F�i=@xj). The multiplicative ergodic
theorem of Oseledec ensures that, under su�ciently general conditions (see Reference [23]
for details) on u, for almost all initial locations x0 (that is, except for a set of measure zero)
the following limit exists:

lim
n→∞[(DF

n
�)
TDFn�]

1=2n=�x0 (6)

with ()T denoting the transpose. Then the matrix �x0 has a spectrum of positive eigenvalues,
the logarithms of which are termed the Lyapunov exponents (or characteristic exponents).
Suitably ordered, we denote them by �1¿ �2¿ �3 in the remainder of the paper.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:555–577



558 P. CARRI �ERE

A positive value of �1 is the signature of chaos: it implies a maintained mean exponential
stretching of the �uid particle along its trajectory. In a non-chaotic region, the asymptotic
stretching is at most quadratic, and thus results in a zero value of �1. There are some particular
situations for which the Lyapunov spectrum has additional properties. For instance, in many
cases of interest (and more particularly in the further test problems), the �uid is incompressible
(∇ · u=0) so that the �ow is volume preserving. From (5), we thus have that det(DF�)=1,
which also implies that det(�x0)= 1 and �nally, from the de�nition of the Lyapunov exponents

�1 + �2 + �3 = 0 (7)

When restricting now to the steady case, trajectories coincide with streamlines; the system
(1) is termed autonomous. Since the distance between two points of the same streamline (for
almost all streamlines and almost all couples of points of a streamline) remains �nite (that
is does not grow to in�nity nor decay to zero), at least one of the Lyapunov exponents must
vanish, i.e.

�2 = 0 (8)

For 3-D, incompressible, steady �ow, (7) and (8) hold and only the value of �1 is thus
required to derive the full Lyapunov spectrum. For the present purpose, (7) and (8) provide
interesting criteria to be satis�ed by the numerical implementation.
In the general case, the three Lyapunov exponents have to be determined. A clever method

for that purpose was proposed by Eckmann and Ruelle [23]. It is based on the integration of
DF� which is found to satisfy

dDF
dt

=∇u(x(t); t)DF(x(t′); t) (9)

with the derivative taken along the trajectory (Lagrangian derivative), and the initial condition

DF(x0; 0)= I (10)

where I denotes the identity matrix. In principle, it is possible to integrate (9) together with
(10) between 0 and p� along the trajectory so as to calculate DFp� for p=1; : : : ; n, but it must
be kept in mind that the norm of DFp� diverges as p increases. A corresponding numerical
scheme is discussed in Section 2.2.
The determination of the Lyapunov spectrum is based on an iterative ‘QR’-decomposition

of the successive Jacobian matrices. First, consider the decomposition

DF�(F�(x0))=Q1R1 (11)

with Q1 an orthogonal matrix and R1 an upper triangular one with non-negative diagonal
elements. In the next step, the matrix

DF2� =DF�(F
2
�(x0))Q1 (12)

is itself decomposed as

DF2� =Q2R2 (13)
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so that, applying this rule n times, one �nally obtains

DFn� =QnRnRn−1 : : :R1 (14)

By denoting �(n)ii as the diagonal elements of the product Rn : : :R1, it has been established
[25] that

lim
n→∞

1
n
log �(n)ii = �i (15)

As well as allowing the determination of the full Lyapunov spectrum, the method also takes
advantage of the high stability of the ‘QR’-decomposition algorithm for long-time integration,
an important property in view of numerical applications [26].

2.2. Time discretization scheme and some implementation details

In this section, it is assumed that the velocity �eld u is explicitly known and is a smooth
function of time and space, allowing di�erentiation at any (su�ciently high) order. Moreover,
we assume that an explicit expression of ∇u as a function of space and time is available.
In the general approach, piecewise di�erentiable functions are under consideration; thus, the
intended focus here is on the integration of (1) and (9) inside a subset �k of the whole
�uid domain �. Since it exhibits high accuracy and is explicit by nature, the popular fourth
order Runge–Kutta scheme has been used to integrate Equation (1). The value of x(t + �t)
is thus obtained using four evaluations x(0), x(1), x(2) and x(3), from which, accordingly, four
evaluations of the velocity gradient tensor between time t and t + �t are relevant:

∇u(0) =∇u(x(0); t)
∇u(1) =∇u

(
x(1); t +

�t
2

)

∇u(2) =∇u
(
x(2); t +

�t
2

)
∇u(3) =∇u(x(3); t + �t)

(16)

From these evaluations, de�ning the matrix

A(t + �t) = I+
�t
6
(∇u(0) + 2∇u(1) + 2∇u(2) +∇u(3)) + �t

2

6
(4(∇u(1))2

−2∇u(1)∇u(3) + (∇u(3))2) + �t
3

6
(∇u(1))3 (17)

the following estimate is shown to hold (see Appendix A):

DF(t + �t)=A(t + �t)DF(t) +O(�t4) (18)

which is thus the time scheme employed in the remainder of the paper. Note that it is accurate
only to order O(�t3), that is one order less than the Runge–Kutta scheme used for trajectory
integration, in accordance with the fact that a �rst order derivative tensor is involved. The
iterative QR-decomposition discussed in Section 2.1 can now be straightforwardly applied to
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Equation (18), the QR-decomposition of the matrix A(t + �t) at each time step leading to
the decomposition of the Jacobian matrix itself.
Implementation of the preceding method is straightforward when an analytical expression of

the velocity �eld and its derivatives are available in the entire domain. However, in many cases
the velocity �eld is itself the result of numerical integration using piecewise de�nite functions,
as in the FEM used hereafter. As a consequence, the present time scheme can only be used
inside a sub-domain �k ; the numerical integration of a trajectory thus requires an accurate
determination of its intersections with the boundaries of many elements as time proceeds. This
is of primary importance since long-time behaviour is required both to obtain informative
Poincar�e sections and to ensure satisfactory convergence of the Lyapunov exponents. To this
end, once a trajectory is detected to escape from a given sub-domain, a Newton–Raphson
algorithm is applied to accurately determine the value of �t such that x(t + �t) lies in an
O(�) vicinity of the boundary of this sub-domain.‡ Because the velocity �eld is usually a
simple function of coordinates (quadratic in the present problem), the convergence of the
Newton–Raphson method is very fast (at most two or three iterations for �=10−10). With the
knowledge of the involved boundary and the use of a suitable neighbouring table for each
sub-domain, the computation can be carried out rapidly. Note also that a similar method is
used for determining the intersection between the trajectory and the Poincar�e section (which
may be either a spatial or temporal surface). A last point is that a variable time step is used
in the Runge–Kutta method based on an estimation of the time truncation error obtained by
evaluating the di�erence between the second and fourth order scheme: the time step is thus
determined so as to ensure a given value of the time truncation error (10−9 in the following
test cases).
Another important aspect of the implementation concerns the QR-decomposition, since this

may be a time consuming part of the method. For the present test cases, where the phase-
space is 3-D, a simple, straightforward, algorithm has been implemented; it has also been
used in a 3-D, time-periodic case [6], i.e. up to a 4-D phase space. For higher dimensions, a
more careful implementation would be required as proposed, for instance, by Golub and Van
Loan [27]. In any case, for higher-dimensional problems, it would be better to make use of
an algorithm available from many classical library routines. In that sense, the present code is
not yet fully optimized.

3. NUMERICAL TESTS

3.1. Preliminary tests

The validity of the implementation was �rst checked by calculating the Lyapunov spectrum
in two classical cases, i.e. the Lorenz system [28–30]

dx1
dt
=�(x2 − x1) (19)

‡In the present approach, the sub-domains are always assumed to be mapped to a generic one, with characteristic
length of order unity.
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dx2
dt
= x1(r − x3)− x2 (20)

dx3
dt
= x1x2 − bx3 (21)

with the classical values �=10, r=28 and b = 8
3 ; and the coupled quartic oscillator [30]

dx1
dt
= x3 (22)

dx2
dt
= x4 (23)

dx3
dt
= − x1(4x21 + 2�x22) (24)

dx4
dt
= − x2(4x22 + 2�x21) (25)

with the value �=8. Whereas the well-documented Lorenz equations are typical of dissipative
systems, the coupled quartic oscillator is of particular interest in the present approach since
it is a conservative system. The results are shown in Table I from which it is seen that no
signi�cant di�erence with the results of Ramasubramanian and Sriram [30] can be detected
as far as the convergence of the Lyapunov exponents is concerned. Since the two systems
are autonomous, at least one Lyapunov exponent has to be zero (two for the coupled quartic
oscillator due to the symmetry of the problem). This property is satisfactorily veri�ed by the
present method. Also, the sum of the Lyapunov exponents is known in each case: it must be
equal to −� − b− 1= 41

3 (the divergence of the right-hand side term) for the Lorenz model,

Table I. Comparison between the Lyapunov spectrum obtained in Reference [30] and
by the present method.

t=10 000 t=100 000

Reference [30] Present method Reference [30] Present method

Lorenz system
�1 0:9022; 0:9040 0.9040 0:9051; 0:9056 0.9058
�2 0:0001; 0:0003 0.0004 0.0000 0.0000
�3 −14:5710;−14:5691 −14:5710 −14:5723;−14:5718 −14:5725∑
�i −13:667 − 41

3 + 1:67× 10−8 −13:667 − 41
3 + 9:13× 10−7

Coupled quartic oscillator
�1 0:1739; 0:2096 0.1796 0:1738; 0:1806 0.1783
�2 0:0010; 0:0011 0.0009 0.0001 0.0001
�3 −0:0013;−0:0011 −0:0010 −0:0001 −0:0001
�4 −0:2095;−0:1795 −0:1795 −0:1806;−0:1738 −0:1783∑
�i 0.0000 3:46× 10−8 0.0000 −2:91× 10−7

Note: Parameter values for the Lorenz system are �=10, r=28 and b=8=3; initial condition is x1|0 = 0,
x2|0 = 1 and x3|0 = 0. For the coupled quartic oscillator �=8 and the initial condition is x1|0 = 0:8, x2|0 = 0:5,
x3|0 = 1:0 and x4|0 = 1:3. In Reference [30] di�erent values have been obtained depending on the method
used, the extrema of which are indicated here.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:555–577



562 P. CARRI �ERE

and is zero for the conservative coupled quartic oscillator. The corresponding results are also
given in Table I.

3.2. A model �ow test

3.2.1. The velocity �eld. In this section, the following steady, 3-D �ow is considered:

u = −U1 sin �x1 cos �x3 e1 − 2U2 sin �x2 cos 2�x3 e2
+(U1 cos �x1 sin �x3 +U2 cos �x2 sin 2�x3)e3 (26)

It was proposed by Toussaint et al. [31] as a prototypical 3-D �ow to study the mixing of
a di�usive scalar by chaotic advection. Depending on the relative values of the parameters
U1 and U2, di�erent kinds of streamlines can be obtained, including globally regular, par-
tially chaotic (i.e. presence of both chaotic regions and regular islands) and globally chaotic
topologies. For �ows having the same viscous dissipation rate, U1 and U2 are related [31] by

U 2
1 +

25
4
U 2
2 = 1 (27)

In the present context, the particular value U1 = 0:5 has been chosen for which two large
regular and chaotic regions coexist. The accuracy of the numerically determined Lyapunov
exponent in both regions provides a fruitful test.
Because the velocity �eld (26) is obtained by superimposing two eigenfunctions of the

Stokes problem in a cubic geometry with free-slip conditions at the boundary, it can be
written as the solution of the forced, stationary, Stokes problem

−	u= − ∇p+ f (28)

∇ · u=0 in � (29)

n
 · u=0; n⊥ · (n
 · ∇)u=0 along 
 (30)

with � being the unit cube, n
 the outward normal to the boundary 
 of � and n⊥ any unit
vector satisfying n⊥ · n
 =0, p the pressure �eld and f the source term given by

f = U1�2 sin �x1 cos �x3 e1 + 10U2�2 sin �x2 cos 2�x3e2
−�2(U1 cos �x1 sin �x3 + 5U2 cos �x2 sin 2�x3)e3 (31)

The Stokes problem (28)–(30) is solved using a standard FEM in the velocity–pressure
formulation. For details on mathematical aspects of the approach, the reader is referred to
the book of Girault and Raviart [32]; for the present purpose only some key points of the
method are emphasized and the standard notation is used. Let Th be a regular triangulation of
�� that consists of tetrahedrons with diameters bounded by h. In this section, Th follows from
grids with constant spacing mainly containing 93, 173 and 333 vertices, respectively.§ Let I (k)h

§Some intermediate grids have also been used for the determination of error estimates as in Figure 1, and a 653
grid was also used for computing the P1-interpolated solution.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:555–577



LYAPUNOV SPECTRUM FROM FEM 563

denote the usual interpolation operator of order k such that, for any function v, I (k)h v|� ∈ Pk for
each � ∈ Th. In the remainder of the section, the notation fh= I

(2)
h f is used. The approximate

form of (28)–(30) considered here is given by

Find uh ∈ Xh and ph ∈ Mh satisfying

(∇uh;∇vh)− (ph;∇ · vh)= (fh; vh) ∀vh ∈ Xh (32)

−(qh;∇ · uh)=0 ∀qh ∈ Qh (33)

Two di�erent pairs of element have been used, namely the popular P1–P2, also termed
Taylor–Hood element with

Xh= {v ∈ C0( ��)3; v|� ∈ P32 ∀� ∈ Th; v · n|
 =0} (34)

Qh= {q ∈ C0( ��); q|� ∈ P1 ∀� ∈ Th}; Mh=Qh ∩ L02(�) (35)

and the P0–P2 element for which the de�nition of Qh and Mh have to be replaced by

Qh=
{
q ∈ L2( ��); q|� ∈ P0 ∀� ∈ Th

}
; Mh=Qh ∩ L02(�) (36)

Linear systems arising from the discrete formulation, as well as the pressure–velocity coupling
problem, are solved using classical conjugate gradient methods.
The P1–P2 element is well known to be relevant for the Stokes problem (that is satisfying

the ‘inf–sup condition’) and the corresponding error estimates are available [32]. On the other
hand, the P0–P2 element is known to be valid in two dimensions but no theoretical result is
valid in three dimensions: heuristically, this is explained by the fact that, in three dimensions,
there is no degree of freedom for the velocity �eld on the faces of the elements to control its
normal component. It is thus thought that, at least, the velocity–pressure coupling leads to a
poorly conditioned problem.¶ Error estimates have been numerically evaluated in the present
problem by determining the evolution of the di�erence between the approximated solution and
the corresponding interpolated one as a function of the mesh size h. The results are shown
in Figure 1. The evolution of the error estimates for the P1–P2 element as a function of h
closely follows the theory, as expected. The interesting point for the P0–P2 element is that,
in the present example, the error estimate for the velocity �eld scales as O(h2), meaning that
the velocity �eld, which is under interest, is well approximated. By contrast, it is clear that
the error estimate on the pressure �eld remains of order O(1) as h is decreased. In addition,
a poor convergence rate of the conjugate gradient method used to solve the pressure–velocity
coupling problem has been observed for the P0–P2 element, whereas fast convergence is
obtained for the P1–P2 element.

3.2.2. Poincar�e sections. The main reason for using the P0–P2 element is, once the constraint
(qh;∇ · uh)=0 is numerically approached to order O(�), the mean divergence of uh inside
each element and, consequently, the mass �ux balance at the boundary of each element,
is thus of order O(�). In view of trajectory integration, such a conservation property may

¶Heuristic considerations on the P0–P2 element in three dimension have been provided to the author by Vivette
Girault in private communications.
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Figure 1. (a) Norm of the di�erence between the approximated velocity �eld uh solution of (32)–(33)
and the interpolated function I (2)h u as a function of h. Solid symbols are for the P0–P2 element, empty
symbols for the Taylor–Hood P1–P2 element. The h2 and h4 dependencies are also shown as dot–dashed
lines; and (b) Same for the di�erence between the approximated pressure �eld ph and the interpolated

one. The h3-dependence is also shown.

be very useful to avoid noisy �uid particle trajectories, a recurrent di�culty in this kind of
method [20]. The corresponding approximated velocity �elds have thus been used for trajectory
integration. The results of trajectory integrations are �rst shown as Poincar�e sections‖ for three
di�erent numbers of degrees of freedom,∗∗ namely 173 in Figure 2, 333 in Figure 3 and 653 in
Figure 4; the result using the analytical expression (26) serves as reference (label (a) in the
�gures). The Poincar�e section is the plane x1 = 1=2. The approximated velocity �elds result
from a P1 interpolation, i.e. I

(1)
h u (label (b)), a P2 interpolation, i.e. I

(2)
h u (label (c)) of the

analytical solution (26), numerical solution of (32)–(33) using P0–P2 elements (label (d))
and P1–P2 elements (label (e)), respectively. Each orbit of the regular region is composed of
104 Poincar�e section points whereas the chaotic region contains 2× 104 points.
All approximated �elds, whatever the grid used, succeed in predicting the presence of a

chaotic region of the same shape. Some small di�erences are discernible in the vicinity of the
boundary of the chaotic region, especially for the P1-interpolated velocity �eld: apparently, it
tends to overestimate the extent of the very small regular islands inside the chaotic sea. Also,
all approximated �elds succeed in describing the T 2-tori of the regular region, without the
apparent undesirable convergence=divergence of streamlines which is often obtained in such
calculations [20]. Once again, small di�erences can be observed between the results obtained
for the P1-interpolated and P0–P2-approximated �elds: depending on the grid, the ‘trace’ of the
inner torus may appear as a discontinuous-like line to be compared with the continuous-like

‖The set of points shown in the �gure and in the remainder of the paper are not, properly speaking, Poincar�e
sections since no orientation is taken into account when the trajectory intersects the surface, leading to double the
e�ective number of points of the set.

∗∗To avoid any ambiguity, since Th is composed of regularly spaced tetrahedrons with constant size, a grid with
(N + 1)3 vertices leads to (N + 1)3 degrees of freedom for a P1 approximation, (2N + 1)3 degrees
of freedom for a P2 approximation and 6N 3 degrees of freedom for a P0 approximation.
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Figure 2. Poincar�e sections obtained from: (a) the analytical velocity �eld u given by (26); (b) the
P1-interpolated I

(1)
h u; (c) the P2-interpolated I

(2)
h u velocity �elds; (d) the P0–P2-approximated; and

(e) the P1–P2-approximated velocity �elds solution of (32)–(33) using 173 degrees of freedom.

line obtained for the analytical �eld. However, such slight di�erences in Poincar�e sections are
probably not very important in most applications since Poincar�e sections are mostly qualitative
rather than quantitative measures of chaos.
From the practical point of view, it must be emphasized that, in addition to the fact that

the lines resulting from the presence of T 2-tori are quite well described, no ‘loss’ of �uid
particles has been observed in these numerical experiments for any of the approximated �elds.
Most probably, this is due to the simplicity of the test �ow. First, this �ow �eld exhibits very
smooth variations which are well reproduced by all interpolated or approximated velocity
�elds. Second, the free-slip condition at the domain boundary also helps. Indeed, ‘loosing’ a
�uid particle refers to the fact that, at some point in time along the trajectory, the particle is
trapped inside an O(�) vicinity of the domain boundary. Here, with vanishing normal com-
ponent and large tangential component of the velocity at the boundary, the particle is rapidly
swept out from the neighbouring region of this boundary, greatly reducing the probability of
such a trapping.

3.2.3. Lyapunov spectrum. The method proposed in Section 2 for the determination of
the Lyapunov spectrum has been applied simultaneously to the trajectory integration of the
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Figure 3. Same as Figure 2 for 333 degrees of freedom.

preceding section. Typical time convergence of the three Lyapunov exponents is shown in Fig-
ure 5, for the case of Figure 2, i.e. 173 degrees of freedom for velocity �elds and for both
regular and chaotic trajectories. The case of the regular trajectory is shown in Figure 2(a).
According to the theory, because the asymptotic stretching is at most algebraic along such
a trajectory, the three Lyapunov exponents are zero; however, their convergence to zero is
slow. This is due to the fact that, at (very) short times, the stretching of a �uid particle is
almost always exponential under the action of the rate of deformation tensor; it is only after
long-time integration that an (at most) algebraic stretching is obtained. For instance, the order
of magnitude of the Lyapunov exponents is still about 5 × 10−5 when using the analytical
velocity �eld. It is of the same order of magnitude for the interpolated velocity �elds and
about 6×10−4 and 2×10−3 for the P1–P2 and P0–P2 approximation, respectively. Figure 2(b)
shows the convergence of the Lyapunov spectrum in the chaotic region. Once again, this is a
very slow process: this is so pronounced in the present test case since both a chaotic and a
regular region coexist. Sometimes, the trajectory visits the near vicinity of the chaotic domain
boundary which has a very complicated structure and induces a complicated behaviour of the
�uid stretching.
Quantitative results of the Lyapunov spectrum in the chaotic region for the di�erent grids

are given in Table II. Except the results obtained for the P0–P2 approximation at the low-
est resolution and the P1 interpolation on the intermediate grid, probably in�uenced by the
behaviour near the chaotic region boundary, only slight di�erences are observed in the
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Figure 4. Same as Figure 2 for 653 degrees of freedom.

Figure 5. Time convergence of the Lyapunov exponents. Velocity �elds are as in Figure 2. Plot: (a) is for
the regular trajectory lying on a T 2 torus (the outer one in Figure 2); and (b) for the chaotic trajectory.
Results for the analytical velocity �eld are plotted with solid lines, P1-interpolated with dashed lines,
P2-interpolated with dot–dashed lines, P0–P2 approximation with double dot–dashed lines and P1–P2

approximation with dot–double dashed lines.
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Table II. Results of the computation of the Lyapunov spectrum in the chaotic region of the �ow (26).

t=400 000 �1 �2 �3 �1 + �2 + �3

Analytical 4:237× 10−2 6:524× 10−6 −4:238× 10−2 −6:011× 10−9

173 d.o.f.
P1-interpolated 4:277× 10−2 −3:605× 10−6 −4:278× 10−2 −3:636× 10−6

P2-interpolated 4:071× 10−2 3:682× 10−6 −4:074× 10−2 −2:557× 10−5

P0–P2 3:720× 10−2 5:519× 10−7 −3:726× 10−2 −6:173× 10−5

P1–P2 4:225× 10−2 6:653× 10−7 −4:227× 10−2 −2:238× 10−5

333 d.o.f.
P1-interpolated 3:412× 10−2 2:878× 10−6 −3:439× 10−2 −2:589× 10−4

P2-interpolated 4:277× 10−2 −3:605× 10−8 −4:278× 10−2 −3:636× 10−6

P0–P2 4:270× 10−2 −1:228× 10−6 −4:270× 10−2 1:622× 10−6

P1–P2 4:258× 10−2 −2:886× 10−6 −4:258× 10−2 −4:576× 10−6

653 d.o.f.
P1-interpolated 4:062× 10−2 2:147× 10−6 −4:071× 10−2 −8:510× 10−5

P2-interpolated 4:367× 10−2 −2:057× 10−6 −4:367× 10−2 −2:226× 10−7

P0–P2 4:199× 10−2 8:129× 10−6 −4:200× 10−2 −4:151× 10−6

P1–P2 4:187× 10−2 7:366× 10−6 −4:188× 10−2 −1:164× 10−6

predicted values of the Lyapunov exponent. Considering the slow convergence of these quanti-
ties, these di�erences are of no signi�cance and it can be concluded that almost all interpolated
or approximated velocity �elds predict the same Lyapunov spectrum. The only signi�cant dif-
ference is concerned with the property that the sum of the Lyapunov exponents is zero since
the system is conservative. From the numerical viewpoint, this property is of course related
to the accuracy achieved when satisfying the continuity constraint, which is h-dependent.
This h-dependence is well recovered, at least for the P2-interpolated and P1–P2-approximated
velocity �eld for which theoretical error estimates are available.
All computations have been performed using a PC with a 1.90Ghz CPU and 512MB of

RAM. The typical computational time for trajectory integration and the associated Lyapunov
spectrum calculation in the case of Table II (105 Poincar�e section points) ranges from 3 h
30min (93 grid) to 6 h (333 grid).

3.3. A more realistic �ow

The simplicity of the �ow �eld (26) has been of particular interest in the study of mixing by
chaotic advection [31, 33, 34] and in the preceding section to provide a basis of comparison
exercise. However, it remains an ad hoc solution of the Stokes equation relatively far from a
realistic �ow. To approach a more realistic situation whilst preserving the qualitative behaviour
of the �ow, one can simulate the following variant: �rst imposing a no-slip condition on the
lateral walls of the cavity; second, replacing the forcing term by an imposed tangential velocity
on the upper and lower boundaries which mimics two moving walls, in the spirit of what has
been experimentally done by Leong and Ottino [35] in a (quasi-) 2-D situation. The situation
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Figure 6. (a) Geometry and boundary conditions for the �ow given by (37)–(42); and
(b) side view of the computational grid.

is sketched in Figure 6. More precisely, the Stokes problem is now

−	u= − ∇p (37)

∇ · u=0 in � (38)

u= g|
 along 
 (39)

where � is still the unit cube and g|
 the prescribed velocity on the boundary 
 of �. The
no-slip boundary condition is obviously obtained by imposing

g=0|
 for x1 = 0; 1; x2 = 0; 1 (40)

Constant tangential velocity is imposed on the upper and lower boundaries, with the exception
of a small intermediate region near the lateral walls

g|
 = −U1e1 +U2e2 for x3 = 0; x1 ∈ [0:05; 0:95]; x2 ∈ [0:05; 0:95] (41)

g|
 = U1e1 +U2e2 for x3 = 1; x1 ∈ [0:05; 0:95]; x2 ∈ [0:05; 0:95] (42)

in order to avoid an ill-posed problem. g|
 is �nally matched to zero in the intermediate
region near the lateral walls by means of quadratic polynomial functions of the coordinates.
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Figure 7. Poincar�e sections of the �ow obtained by numerical solution of (37)–(39) with:
(a) U1=U2 = 0:5=0:346; and (b) U1=U2 = 0:25=0:387.

A relevant quantity is the ratio U1=U2 which allows qualitative comparisons with the �ow
�eld (26).†† Preserving the ratio: U1=U2 = 0:5=0:346 ≈ 1:445, of Section 3.2, the coexistence
of both a regular and a chaotic region is still predicted, as evident from the Poincar�e sec-
tion shown in Figure 7(a). Moreover, as shown in Figure 7(b), a globally chaotic �ow
is obtained for U1=U2 = 0:25=0:387 as for the model �ow (26), see Reference [31]. The
computations‡‡ were performed on a 333 grid using P1–P2 elements since they gave the
most satisfying results in the model �ow problem. Of course, only qualitative features are
preserved: the shape and the size of the regular region are largely di�erent in Figure 7(a)
and Figure 4, for instance. Since most of the mass �ux is created near the moving walls,
the centre of the cavity is rarely visited by the trajectories. A less evident feature is the
presence of three empty strips in the Poincar�e sections: these reveal that the motion of the
walls in the e1-direction induces small recirculations in the upper and lower half of the cavity,
respectively, which superpose to the primary top-to-bottom recirculation. The present �ow is
thus more complicated than the model �ow which probably explains the smaller extent of the
regular region.
The corresponding time convergence of the Lyapunov spectrum is shown in Figure 8.

The convergence to zero of the Lyapunov exponent inside the regular region is obtained
satisfactorily (the order of magnitude of these, not distinguishable in the �gure, is 10−4 at
time t ≈ 4× 104). Non-vanishing values are obtained in the chaotic region: they are slightly
larger than for the model �ow but it must be underlined that the normalization is di�erent

††In such a Stokes �ow, only the relative values of U1 and U2 are relevant since any arbitrary multiplicative factor
may be removed by a simple change of variables in (37)–(39). Likewise, a multiplicative factor in the velocity
�eld may be removed by rescaling the time variable in the trajectory equation (1).

‡‡As additional information, the numerical solution of (37)–(39) for the 333 grid required about 15′ using the PC
described above.
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Figure 8. Time convergence of the Lyapunov exponents. Velocity �eld and parameters as in Figure 7.

for each �ow. Numerical evaluation of the viscous dissipation of the present �ow would be
required in order to allow quantitative comparison but this lies outside the scope of the paper.
Finally, it may be noted that the convergence of the Lyapunov exponents is not fully

achieved, although it is su�cient to evaluate their order of magnitude. This is due to the fact
that all the trajectory computations involving the chaotic region end when the �uid particle is
trapped in a O(�) neighbourhood of a wall, an important feature from the practical viewpoint.
This is of course a matter for discussion: a chaotic trajectory is theoretically intended to cover
entirely a measurable set, including the very close vicinity of the wall where the velocity
vanishes. Indeed, it was observed that the time spent before the occurrence of such a trapping
is very sensitive to the initial location of the particle. Thus, even if the decision to end the
calculation is user implementation dependent, the particle would anyway remain in such a
region for a very long time, probably making the computation unfeasible. However, it must
be emphasized that the grid re�nement plays an eminent role in that problem. Obtaining
results such as those shown in Figures 7 and 8 has been possible only with a large number of
degrees of freedom (653) and a non-regularly spaced grid. Of course, reducing the size of the
elements near the walls increases the accuracy of the trajectory calculation in this region, but
increasing the number of degrees of freedom also leads to more accurately satisfy the mass
�ux conservation. Clearly, more developments, including the use of many di�erent types of
�nite elements, are required to be conclusive on this issue.

4. CONCLUSION

Two key results of the present study may be emphasized. First of all, it is possible to obtain
an accurate evaluation of the Lyapunov spectrum of chaotic advecting �ows by means of an
approximated velocity �eld resulting from a standard simulation method. The grid re�nement
does not appear to be critical, at least for the piecewise quadratic approximation of the
velocity �eld associated with a compatible approximation for the pressure �eld (Taylor–Hood
element) here considered. A second important result is that no undesirable e�ects such as
noisy boundaries of T 2-tori or, worse, orbits spiraling to a stable surface have been obtained
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as in the work of Fountain et al. [20]. Correspondingly, the Lyapunov exponents are found
to decay to zero in stable regions. Since satisfying results have been obtained even for a
relatively coarse grid (173 degrees of freedom) it is probably the careful determination of the
intersection of the trajectory with the boundary of the element which plays the essential role.
By doing so, the trajectory integration is fully compatible with the piecewise approximation
of the velocity: no additional numerical error is thus added to the Runge–Kutta scheme which
remains valid inside each element. Of course, the possible e�ect of the accuracy for satisfying
the continuity constraint must be kept in mind.
Such an optimistic conclusion must be tempered by the situation for more realistic �ows.

The �ow under consideration in Section 3.3 is more complex than the model �ow of
Section 3.2, especially because of the presence of strong velocity gradient variations near
the wall. The additional problem encountered in this case is the trapping of �uid particles in
the vicinity of the walls where the velocity vanishes. Only a careful design of the grid with a
su�ciently large number of vertices has made possible meaningful results. The convergence
of Lyapunov exponents is, in this case, limited by the available integration time before such
a trapping occurs. The phenomenon is very sensitive to the initial location of the �uid parti-
cle. Although it may only be a matter of implementation, this is presently a clear limitation
of such calculations. Additional work is thus required, especially testing di�erent kinds of
elements, the study of the so-called P0–P2 element being unsatisfactory in the present study.
Finally, another issue is that only the Lyapunov exponents have been studied in the present

work. During the past decade, the notion of �nite time Lyapunov exponents has emerged (see,
for instance, References [36–38]). For this purpose, direct extensions of the present method,
such as the one proposed by Okushima [39], may reasonably be implemented. However,
it must be noted that the notion of �nite time Lyapunov exponents is ‘not on the same
mathematical footing as standard Lyapunov exponents’ [9]. The exact de�nition, for instance,
may vary from author to author depending on whether the stretching in the direction of the
exact Lyapunov vector or the maximal stretching rate, at time t, is considered. Moreover,
because of the large departure in short time evolution of the stretching for the same initial
location and di�erent velocity approximations, as can be seen in Figure 5, the relevance of
any such evaluation is questionable.

APPENDIX A: TIME DISCRETIZATION ERROR

This appendix is devoted to the validity of the error estimate in Equation (18). In classical
fashion, we begin by Taylor expanding DF(t + �t) as

DF(t + �t)=DF(t) + �t
dDF
dt

∣∣∣∣
t
+
�t2

2
d2DF
dt2

∣∣∣∣
t
+
�t3

6
d3DF
dt3

∣∣∣∣
t
+O

(
�t4
)

(A1)

where we only kept the t-dependence of DF to simplify the notation. However, it is recalled
that d=dt stands here for the Lagrangian derivative that is following a �uid particle trajectory.
Time derivatives of DF can be expressed as functions of DF itself by using the evolution
equation (9):

dDF
dt

∣∣∣∣
t
=∇u(x(t); t)DF(t) (A2)
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d2DF
dt2

∣∣∣∣
t
= ∇u(x(t); t) dDF

dt

∣∣∣∣
t
+
d∇u
dt

∣∣∣∣
(x(t);t)

DF(t)

= (∇u(x(t); t))2DF(t) + d∇u
dt

∣∣∣∣
(x(t);t)

DF(t) (A3)

d3DF
dt3

∣∣∣∣
t
=
d(∇u)2
dt

∣∣∣∣
(x(t);t)

DF(t) + (∇u(x(t); t))2 dDF
dt

∣∣∣∣
t
+
d2∇u
dt2

∣∣∣∣
(x(t);t)

DF(t)

+
d∇u
dt

∣∣∣∣
(x(t);t)

dDF
dt

∣∣∣∣
t

= (∇u(x(t); t))3DF(t) +∇u(x(t); t) d∇u
dt

∣∣∣∣
(x(t);t)

DF(t)

+2
d∇u
dt

∣∣∣∣
(x(t);t)

∇u(x(t); t)DF(t) + d2∇u
dt2

∣∣∣∣
(x(t);t)

DF(t) (A4)

Replacing the preceding expressions in (A1), the expansion of DF(t + �t) is obtained as

DF(t + �t) =

[
I+ �t∇u(x(t); t) + �t

2

2

(
(∇u(x(t); t))2 + d∇u

dt

∣∣∣∣
(x(t);t)

)

+
�t3

6

(
(∇u(x(t); t))3 +∇u(x(t); t) d∇u

dt

∣∣∣∣
(x(t);t)

+ 2
d∇u
dt

∣∣∣∣
(x(t);t)

∇u(x(t); t) + d2∇u
dt2

∣∣∣∣
(x(t);t)

)]
DF(t) +O(�t4) (A5)

At this point, whereas the expression of ∇u is explicitly known, its (Lagrangian) time
derivatives of up to second order have to be determined. As mentioned in the main text, four
evaluations of ∇u at di�erent times (and locations) are available according to the Runge–Kutta
method, which are given by (16). Taylor expanding the expression of ∇u(1):

∇u(1) = ∇u
(
x(t) +

�t
2
u(x(t); t); t +

�t
2

)

= ∇u(x(t); t) + �t
2

[
@∇u
@t

∣∣∣∣
(x(t);t)

+ (∇∇u)(x(t);t) u(x(t); t)
]

+
�t2

8

[
@2∇u
@t2

∣∣∣∣
(x(t);t)

+
(
(∇∇∇u)(x(t);t) u(x(t); t)

)
u(x(t); t)

+2
(

∇@∇u
@t

)
(x(t);t)

u(x(t); t)

]
+O(�t3) (A6)
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it is found that

∇u(1) = ∇u(x(t); t) + �t
2
d∇u
dt

∣∣∣∣
(x(t);t)

+
�t2

8

[
d2∇u
dt2

∣∣∣∣
(x(t);t)

− (∇∇u)(x(t);t) dudt
∣∣∣∣
(x(t);t)

]
+O(�t3) (A7)

Acting similarly with ∇u(2), one has

∇u(2) = ∇u
(
x(t) +

�t
2
u(1); t +

�t
2

)

= ∇u(x(t); t) + �t
2

[
@∇u
@t

∣∣∣∣
(x(t);t)

+ (∇∇u)(x(t);t) u
(
x(1); t +

�t
2

)]

+
�t2

8

[
@2∇u
@t2

∣∣∣∣
(x(t);t)

+
(
(∇∇∇u)(x(t);t) u

(
x(1); t +

�t
2

))
u
(
x(1); t +

�t
2

)

+2
(

∇@∇u
@t

)
(x(t);t)

u
(
x(1); t +

�t
2

)]
+O(�t3) (A8)

Expanding now u(x(1); t + �t=2) as

u
(
x(1); t +

�t
2

)
= u

(
x(t) +

�t
2
u(x(t); t); t +

�t
2

)

= u(x(t); t) +
�t
2

[
@u
@t

∣∣∣∣
(x(t);t)

+∇u(x(t); t)u(x(t); t)
]
+O(�t2)

= u(x(t); t) +
�t
2
du
dt

∣∣∣∣
(x(t);t)

+O(�t2) (A9)

it is obtained that

∇u(2) = ∇u(x(t); t) + �t
2
d∇u
dt

∣∣∣∣
(x(t);t)

+
�t2

8

[
d2∇u
dt2

∣∣∣∣
(x(t);t)

+(∇∇u)(x(t);t) dudt
∣∣∣∣
(x(t);t)

]
+O(�t3) (A10)
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Finally, expanding ∇u(3) as

∇u(3) = ∇u(x(t) + �tu(2); t + �t)

= ∇u(x(t); t) + �t
[
@∇u
@t

∣∣∣∣
(x(t);t)

+ (∇∇u)(x(t);t) u
(
x(2); t +

�t
2

)]

+
�t2

8

[
@2∇u
@t2

∣∣∣∣
(x(t);t)

+
(
(∇∇∇u)(x(t);t)u

(
x(2); t +

�t
2

))
u
(
x(2); t +

�t
2

)

+2
(

∇@∇u
@t

)
(x(t);t)

u
(
x(2); t +

�t
2

)]
+O(�t3) (A11)

and noting that

u
(
x(2); t +

�t
2

)
= u

(
x(t) +

�t
2
u(1); t +

�t
2

)

= u (x(t); t) +
�t
2

[
@u
@t

∣∣∣∣
(x(t);t)

+∇u(x(t); t)u
(
x(1); t +

�t
2

)]
+O(�t2)

= u(x(t); t) +
�t
2
du
dt
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(x(t);t)

+O(�t2) (A12)

it leads to

∇u(3) =∇u(x(t); t) + �t d∇u
dt

∣∣∣∣
(x(t);t)

+
�t2

2
d2∇u
dt2

∣∣∣∣
(x(t);t)

+O(�t3) (A13)

With this, it is �rstly found that

�t
6
(∇u(0) + 2∇u(1) + 2∇u(2) +∇u(3)) = �t∇u(x(t); t) + �t

2
d∇u
dt

∣∣∣∣
(x(t);t)

+
�t2

6
d2∇u
dt2

∣∣∣∣
(x(t);t)

+O(�t4) (A14)
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secondly that

�t2

6
(4(∇u(1))2 − 2∇u(1)∇u(3) + (∇u(3))2) = �t2

2
(∇u(x(t); t))2

+
�t3

6
∇u(x(t); t) d∇u

dt

∣∣∣∣
(x(t);t)

+
�t3

3
d∇u
dt

∣∣∣∣
(x(t);t)

∇u(x(t); t)

+O(�t4) (A15)

and �nally that

�t3

6
(∇u(1))3 = �t

3

6
(∇u(x(t); t))3 +O(�t4) (A16)

so that using Equation (18) of Section 2.2, the preceding expression (A5) of the present
appendix is retrieved.
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